AKUSTICKÉ LISTY České akustické společnosti www.czakustika.cz

ročník 12, číslo 4

prosinec 2006

Obsah
Pozvánka na Valnou hromadu
73. akustický seminář Miroslav Meller
Zobrazování ultrazvukových polí v proudícím plynu z jehly Visualization of ultrasonic fields in gas flow Rudolf Bálek a Lukáš Kobl
Měření akustické difrakce na modelové hlavě a trupu The measurement of acoustic diffraction on model of human head and body Jiří Zendulka a Ilona Ali Bláhová
Seznam českých technických norem – září 2006 Jaromír Čížek
Obsah Acta Acustica 92(4)
Obsah Acta Acustica 92(5)

ČESKÁ AKUSTICKÁ SPOLEČNOST

Rada České akustické společnosti svolává ve smyslu stanov

VALNOU HROMADU,

která se bude konat ve čtvrtek 18. ledna 2007 na fakultě elektrotechnické ČVUT, Technická 2, Praha 6 – Dejvice.

Rámcový program:

10.00 - 11.45Jednání v odborných skupinách. Rozpis místností pro jednání v odborných skupinách bude vyvěšen ve vstupním prostoru fakulty a na dveřích sekretariátu společnosti, dveře č. 428

12.00 - 13.00 Prezentace

13.15 – 16.00 Plenární zasedání, místnost č. 82

Důležité upozornění: Člen společnosti, který se nebude moci Valné hromady osobně zúčastnit, pověří jiného člena, aby jej zastupoval. Jeden člen společnosti může zastupovat nejvýše tři členy. Formulář pověření je součástí tohoto čísla Akustických listů.

Na zasedání Rady ČsAS dne 20. listopadu 2006 bylo schváleno zvýšení částky za členský příspěvek z 350,– na 400,– Kč. Částka pro důchodce a studenty zůstává nezměněná, tj. 100,– Kč.

73. akustický seminář

Ve dnech 9. až 11. října 2006 se v zámeckém hotelu ČSAV v Třešti konal pravidelný, již 73. akustický seminář. Hlavní náplň semináře byla zaměřena na stavební a prostorovou akustiku, ale seminář se rovněž zabýval v jednotlivých příspěvcích celou oblastí akustiky – od fyzikální akustiky a elektroakustiky přes stavební a prostorovou akustiku až po hlukovou problematiku. Významnou část tvořila oblast věnovaná vývoji hlukové legislativy ČR, zejména ve vztahu k poslední novelizaci NV 148/2006 Sb. Účastníci byli rovněž informováni o zavádění a průběhu autorizací laboratoří působících v oblasti ochrany veřejného zdraví podle zákona č. 258/2000 Sb. Užitečná byla i informace o nových technických normách v oboru stavební akustiky. Zajímavá byla zejména diskuze o možné revizi požadavkové normy ČSN 73 0532, týkající se akustických vlastností stavebních výrobků. V průběhu semináře byly také prezentovány nové stavební výrobky a postupy přispívající k praktické realizaci protihlukových opatření na stavbách. Účastníci byli též seznámeni s novinkami v přístrojové měřicí technice a softwaru. V odpoledních a podvečerních hodinách byl zorganizován pěší výlet na blízký kopec Špičák.

Semináře se zúčastnilo celkem 50 zájemců z řad České a Slovenské akustické společnosti. Bylo předneseno 18 příspěvků, z toho 11 je uvedeno ve vydaném sborníku.

Organizace semináře byla díky profesionálnímu zázemí hotelu na dobré úrovni a byla pro účastníky přínosem. Rada ČsAS a organizátoři tímto také děkují za sponzorské příspěvky.

Miroslav Meller

Zobrazování ultrazvukových polí v proudícím plynu z jehly

Rudolf Bálek a Lukáš Kobl

ČVUT–FEL, Technická 2, 166 27 Praha 6 e-mail: balek@fel.cvut.cz

There are a variety of situations where the visualization of disturbances or inhomogeneties in transparent media is required. One solution, which has been developed to align with this problem, is schlieren imaging. This technique allows us to see the invisible: e.g. in this paper described ultrasonic wave interaction with gas flow from the hollow needle. The technical requirements of optical and electronic components as well as specifications of inexpensive schlieren optical system for high-resolution visualization are introduced. Results to be presented include the schlieren pictures of the space between the surface of ultrasound transducer and the tip of the hollow needle with different gas flow if the ultrasound wave generator is switched on and off.

1. Úvod

Šlírová metoda umožňuje zobrazit změny indexu lomu v transparentních tekutinách, plynech a pevných látkách vyvolané např. teplotním gradientem, prouděním či ultrazvukovým vlněním ve vyšetřovaném prostředí. Šlírové zobrazení použil již R. Hook (1635–1703). Pozoroval teplotní gradienty ve vzduchu vyvolané svíčkou. V 19. století začal metodu používat A. Toepler (1836–1912) k zobrazení optických nehomogenit ve skle – šlír (německy Schlieren), podle kterých byla metoda později nazvána. V současné době je šlírová metoda velmi účinným prostředkem užívaným v balistice, aerodynamice a analýze šíření ultrazvukových vln [1].

2. Princip šlírového zobrazení

Mezi hustotou plynu ρ ve vyšetřovaném prostředí a jeho indexem lomu n platí pro danou vlnovou délku světla přímá úměrnost vyjádřená vztahem

$$n-1 \sim \rho$$
 . (1)

Podobný vztah platí i pro hustotu ρ_0 a index lomu n_0 při standardních podmínkách

$$n_0 - 1 \sim \rho_0$$
 . (2)

Rovnice

$$n - 1 = (n_0 - 1)\rho/\rho_0 \tag{3}$$

potom vyjadřuje vztah mezi indexem lomu a hustotou plynu v daných podmínkách vůči plynu za podmínek standardních [1]. Připomeňme, že podle stavové rovnice souvisí hustota plynu s jeho teplotou, tlakem a objemem. Mezi rychlostí světla a indexem lomu n platí vztah

$$c = c'/n , \qquad (4)$$

kde c a c' jsou rychlosti světla ve vyšetřovaném prostředí a ve vakuu. Zaveďme podle obrázku 1 souřadnicový systém s osou z rovnoběžnou se směrem světelného paprsku, který

Obrázek 1: Lom světelného paprsku při průchodu prostředím se zvyšujícím se indexem lomu n

vstupuje do vyšetřované oblasti. Úhel odchýlení dráhy tohoto paprsku lze vyjádřit pomocí gradientu indexu lomu prostředí v rovině kolmé k paprsku. Holder a North [2] popsali výsledná odchýlení, viz obr. 1, vztahy

$$\varepsilon_x = \int_0^L \frac{1}{n_0} \cdot \frac{\partial n}{\partial x} \mathrm{d}z \tag{5}$$

$$\varepsilon_y = \int\limits_0^L \frac{1}{n_0} \cdot \frac{\partial n}{\partial y} \mathrm{d}z,\tag{6}$$

kde L je šířka vyšetřované oblasti.

Pokud budou $\frac{\partial n}{\partial x}$ či $\frac{\partial n}{\partial y}$ po celé šířce L konstantní, dostaneme pro úhly odchýlení

$$\varepsilon_x = \frac{L}{n_0} \cdot \frac{\partial n}{\partial x} \tag{7}$$

$$\varepsilon_y = \frac{L}{n_0} \cdot \frac{\partial n}{\partial y} \,. \tag{8}$$

V případě, že se tyto gradienty budou měnit v závislosti na souřadnici z, budou výsledná odchýlení dána součtem odchýlení od všech gradientů n, které se vyskytují podél dráhy paprsků a která jsou vyjádřena rovnicemi (5) a (6). Světelné paprsky se budou lámat vždy směrem rostoucího gradientu n, tedy k místům, kde je prostředí nejhustší. Lom tedy určují $\frac{\partial n}{\partial x}$ a $\frac{\partial n}{\partial y}$, nikoliv samotná velikost indexu lomu n.

S interpretací integrace v rovnicích (5) a (6) je spojen ještě jeden problém, který není na první pohled patrný. Uvažujme neměnný index lomu ve směru z v celé šíři L. Pak pro velké gradienty např. $\frac{\partial n}{\partial x}$, vyskytující se pouze v omezeném rozsahu souřadnice x, dojde k odchýlení paprsku do oblasti se zcela jinou velikostí $\frac{\partial n}{\partial x}$ a zobrazení vyjádřené velikostí úhlu ε_x nebude v této přechodné oblasti zcela odpovídat skutečnosti. Uvedený jev může vést k mylné interpretaci gradientu n ve vyšetřované oblasti.

Obrázek 2: Jednoduchý šlírový zobrazovací systém

Jednoduchý šlírový zobrazovací systém je znázorněn v obr. 2. Světelné paprsky ze zdroje světla ${\cal Q}$ jsou kolimovány kondensorem C na horizontálně umístěnou štěrbinu F v ohnisku čočky L_1 . Výsledkem je vytvoření rovnoběžných světelných paprsků mezi spojnými čočkami ${\cal L}_1$ a ${\cal L}_2$ v tzv. vyšetřované oblasti V. Odtud jsou paprsky čočkou L_2 promítnuty na stínítko S. Postupným zacláněním ohniska čočky L_2 pohybem clony s ostřím K (žiletka) směrem vzhůru stínítko tmavne. Polohou ostří si lze vybrat tmavé nebo světlé osvětlení stínítka S. V případě tmavého stínítka paprsky odchýlené od nehomogenit N v oblasti V padnou mimo ohnisko čočky L_2 . Dva takové paprsky odchýlené o úhel $\pm \varepsilon_y$ jsou nakresleny v obr. 2. Horní paprsek osvětlí stínítko, dolní je zadržen clonou K. V případě světlého stínítka se zobrazí zadržený paprsek ztmavnutím stínítka. Stejná úvaha jako pro uvedené dva paprsky platí pro celou vyšetřovanou oblast V, resp. její zobrazení na stínítku $S\!.$

Pro jednoduchost si dle obr. 3 představme, že jen část čočkou L_2 fokusovaného, nehomogenitami neovlivněného obrazu štěrbiny F s plochou $b \times a$ se promítne na stínítko S a vytvoří jeho základní osvětlení. Změnu tohoto základního osvětlení způsobí jen ty nehomogenity, které splňují následující dvě podmínky:

- 1. změna indexu lomu ve vyšetřovaném prostředí musí probíhat ve směru kolmém k hraně ostří clony K,
- 2. změna indexu lomu nesmí být tak velká, aby se fokusovaná plocha zcela neposunula mimo plochu clony, nebo naopak celá padla na tuto neprůhlednou plochu (podmínka zachování dynamického rozsahu). Připomeňme, že jenom pro a = h/2 bude stejný měřicí rozsah pro oba směry odchýlení kolmé k ostří clony.

Obrázek 3: Obraz štěrbiny ${\cal F}$ v ohnisku čočky L_2

Je patrné, že toto uspořádání zobrazí jen svislé gradienty n. Pro zobrazení vodorovných umístíme hranu ostří K a také štěrbinu F vertikálním směrem a dojdeme k analogickým závěrům. Nahradíme-li ostří clony tenkým drátkem vodorovně orientovaným, získáme možnost zobrazovat paprsky odchýlené do směrů nad i pod drátek. Základní osvětlení stínítka bude dáno volbou průměru drátku vzhledem k výšce fokusované plochy h. Zvýší se tak citlivost zobrazení. Pokud požadujeme zobrazení nehomogenit v horizontálním i ve vertikálním směru, je vhodné místo štěrbiny F použít kruhový otvor (prostorový filtr) a místo clony s ostřím kruhový terč nebo alespoň konec tenkého drátku.

Při zachování podmínky dynamického měřicího rozsahu lze pro posunutí hrany fokusované plochy gradientem $\frac{\partial n}{\partial y}$ ve vyšetřované oblasti psát

$$\Delta a \doteq f_2 \varepsilon_y , \qquad (9)$$

kde f_2 je ohnisková vzdálenost čočky L_2 a ε_y je úhel odchýlení světla ve směru souřadnice y.

Stále předpokládejme horizontální štěrbinu F jako zdroj světla a horizontálně situované ostří clony K. Vyjdeme-li z jasu zdroje světla $B [cd/m^2]$, můžeme vyjádřit osvětlení čočky L_1 jako

$$E_0 = \frac{Bbh}{f_1^2} , \qquad (10)$$

kde *b* a *h* jsou výška a šířka štěrbiny a f_1 je ohnisková vzdálenost čočky L_1 . Při uvážení bezeztrátové optiky bude stejné osvětlení i ve vyšetřovaném prostředí a také na čočce L_2 .

I když nedojde k zaclonění světla v ohnisku L_2 , bude osvětlení stínítka záviset na koeficientu m, který vyjadřuje případné zvětšení obrazu na stínítku vůči jeho velikosti ve vyšetřované oblasti, čímž obdržíme:

$$E_0 = \frac{Bbh}{m^2 f_1^2} \,. \tag{11}$$

Pokud zacloníme ohnisko L_2 , viz obr. 3, bude světlo procházet jen plochou $b \times a$. Nahradíme-li h vztahem $\frac{f_1}{f_2}a$, dostaneme vztah

$$E = \frac{Bba}{m^2 f_1 f_2} , \qquad (12)$$

který udává tzv. osvětlení "pozadí" stínítka. Uvažme nyní výskyt nehomogenity ve vyšetřovaném poli, která vychýlí paprsek o úhel ε s y-složkou ε_y . Jak jsme už viděli v obr. 3, dojde k posunutí fokusovaného světla v ohnisku L_2 o vzdálenost $\Delta a = \varepsilon_y f_2$. Vložíme-li a místo Δa do rovnice (12), dostaneme vztah

$$\Delta E = \frac{Bb\varepsilon_y}{m^2 f_1} , \qquad (13)$$

který popisuje změnu osvětlení stínítka vyvolanou nehomogenitou n ve vyšetřované oblasti v závislosti na úhlu lomu ε_y . Snadno pak vyjádříme kontrast v zobrazení nehomogenit jako poměr změny intenzity osvětlení k intenzitě pozadí

$$C \equiv \frac{\Delta E}{E} = \frac{f_2 \varepsilon_y}{a} \,. \tag{14}$$

KontrastC je výstupní veličinou zobrazovací metody, úhel lomu ε veličinou vstupní. Citlivost je definována poměrem změny na výstupu ku změně na vstupu. Pro citlivost v kontrastu dostaneme

$$S = \frac{\mathrm{d}C}{\mathrm{d}\varepsilon} = \frac{f_2}{a} \,. \tag{15}$$

Z tohoto vztahu je vidět, že citlivost je přímo úměrná ohniskové vzdálenosti čočky L_2 a nepřímo úměrná výšce nezacloněné plochy fokusovaného světla *a*. Pro velmi malá *a* nevzrůstá citlivost nade všechny meze, neboť začíná dominovat difrakce světla, kterou jsme zatím neuvažovali.

Z uvedených vztahů je vidět, že šlírová zobrazovací metoda je v podstatě lineární. Kontrast na stínítku je přímo úměrný úhlu lomu ε . Zároveň i osvětlení pozadí stínítka je přímo úměrné velikosti nezacloněné oblasti v ohnisku čočky L_2 vyjádřené velikostí *a*. Linearitu zobrazení většinou ztrácíme až nelineárním detektorem obrazu. Bývá jím často lidské oko nebo fotografický film, jejichž odezva je logaritmická.

V literatuře lze nalézt, že ještě detekovatelná velikost kontrastu se pohybuje od 2 do 5%. Z rovnice (14) snadno zjistíme prahovou velikost ε pro zvolené *a*. Z rovnic (10) a (14) při C = 5% obdržíme

$$\left. \frac{\partial n}{\partial x} \right|_{\min} = 0.05 \, \frac{n_0}{L} \frac{a}{f_2} \,, \tag{16}$$

kde L je délka nehomogenity ve směru osy z. Ze vztahu je patrno, že citlivost zobrazení vzrůstá s délkou ohniskové vzdálenosti čočky L_2 , s šířkou L vyskytujících se nehomogenit a s co nejmenším rozměrem a, tj. s co největším zatemněním obrazu štěrbiny v ohnisku čočky L_2 .

S minimalizací a dochází ke zvýraznění difrakčních jevů vytvářejících průnik světla do oblastí, které by měly být zcela zacloněné clonou, a ke vzniku interferenčních proužků v oblasti stínítka podél hrany ostří clony. Difrakční jevy proto nedovolí u šlírové metody využívat maximální citlivosti vyjádřené pouze na základě geometrické optiky rovnicí (16). Rozsah difrakce daného paprsku závisí na jeho umístění vzhledem k ostří clony. Při interpretaci zobrazení nehomogenit indexu lomu je proto vhodné zobrazení zjemňovat postupným zmenšováním rozměru *a* až do velikosti, kdy začnou převládat difrakční jevy. V praxi lze difrakci obejít tím, že clonu s ostřím nahradíme optickým filtrem, jehož propustnost se bude měnit ve směru kolmém k ostří clony. Hledaná nehomogenita ve vyšetřované oblasti se proto zobrazí vůči lineárně se měnícímu osvětlení stínítka vytvořeného tímto filtrem.

3. Uspořádání experimentu

Popsaná šlírová zobrazovací metoda byla užita k zobrazení proudícího plynu z duté jehly proti kmitajícímu povrchu nástavce ultrazvukového měniče, který působí jako zesilovač amplitudy měniče, jak je vidět v obr. 4.

Obrázek 4: Uspořádání experimentu

Zdrojem světla Q byla laserová dioda. Štěrbina F byla nahrazena prostorovým filtrem P o průměru 8 μ m. Kolimátor C, prostorový filtr P a čočka L_1 byly integrovány do jednoho celku $C + P + L_1$. Clonu s ostřím K tvořil konec svislého drátku o průměru 0,1 mm. Obraz ze stínítka S byl snímán CCD kamerou nebo digitálním fotoaparátem. Lepším řešením by bylo přímé vložení kamery na místo stínítka S. Tato varianta byla vyloučena nedostupností vhodného objektivu kamery. Specifikace užitých součástek je v tabulce 1.

Špička jehly (Terumo $1,2\times40$, Belgium, vnější průměr 1,2 mm, vnitřní průměr 0,7 mm) byla umístěna ve vzdálenosti 4 mm od středu povrchu nástavce ultrazvukového měniče. Amplituda kmitů konce nástavce dosahovala $42 \,\mu$ m při kmitočtu 20,3 kHz. Tato plocha nástavce byla zdrojem postupného ultrazvukového vlnění, které se absorbovalo v akustickém absorbéru z minerální vlny umístěné okolo jehly. Do jehly byl přiváděn propan-butan z bomby přes redukční ventil umožňující regulaci průtoku 0 - 0,5 slm (standardních litrů za minutu).

4. Experimentální výsledky

Šlírová fotografie oblasti mezi plochou nástavce ultrazvukového měniče a špičkou jehly je ukázána na obr. 5a.

Q	Laser Diode Melles-Griot, vln. délka 635 nm, výstupní výkon 10 mW, průměr paprsku 7 mm,
	typ: 56 ICS 172/Hs
Р	Spatial filter Melles-Griot, průměr štěrbiny $8\mu{\rm m},$ typ: 09 LSP 011
L_1	Focusing lens Melles-Griot, ohnisková vzdálenost $4\mathrm{mm},\mathrm{max}.$ průměr $1.6\mathrm{mm},\mathrm{typ}$ 09 LSL
	001
С	Collimator Melles-Griot, max. výstup paprsek 50 mm, ohnisková vzdálenost 209,8 mm, typ:
	09 LCM 013
Ultrazvukový	Frekvence 20,3 kHz,
generátor	amplituda výchylky povrchu měniče $0\!-\!42\mu\mathrm{m}$
K	Clona na mikrometrickém posuvu
L_2	Carl Zeiss, typ: Tessar $(4,5/360)$
Kamera	CCD kamera, Minitron, OS-75D
Fotoaparát	Olympus, C-740 Ultra Zoom

Tabulka 1: Přehled použitých součástek

V obr. 5b jsou šlírové fotografie pro tři různé průtoky propan-butanu jehlou bez použití ultrazvuku a v obr. 5c stejné tři průtoky, ale s použitím ultrazvuku. Snímky jsou uspořádány podle zvyšujícího se průtoku odshora dolů. Horní snímky odpovídají nejnižšímu a spodní nejvyššímu průtoku, tj. 0,5 slm.

Z porovnání snímků ve sloupci b) a c) vidíme velkou odlišnost průběhu gradientu indexu lomu a poměrně složitou strukturu vzniklých polí v důsledku užití ultrazvuku. Zobrazení budou předmětem dalších podrobných fyzikálních interpretací. Zatím lze konstatovat, že plyn proudící z jehly si na své cestě k nekmitajícímu nástavci měniče zachovává průřez jehly až do okamžiku, kdy narazí na čelní plochu nástavce. Tam mění směr a obtéká ji v tenké vrstvě. Na snímcích je pozorovatelné ostré rozhraní mezi proudem plynu podél osy jehly a okolním prostředím svědčící o velkém gradientu indexu lomu. Toto rozhraní při aplikaci ultrazvuku a nízkých průtocích plynu prakticky zmizí. Podobně se chová i rozhraní tenké vrstvy plynu obtékajícího povrch nástavce ultrazvukového měniče. Při nejvyšších průtocích je mezní vrstva narušena jak turbulencemi vzniklými prouděním plynu, obr. 5b dole, tak účinkem ultrazvukového pole, obr. 5c dole.

Lze tedy konstatovat, že aplikace ultrazvuku naruší, respektive "rozmixuje" původní hustotní rozložení proudícího plynu a ustaví rozložení nové.

5. Závěr

Popsaná zobrazovací metoda byla užita při výzkumu vlivu výkonového ultrazvuku na stejnosměrný výboj mezi jehlou a rovinnou elektrodou (povrch nástavce ultrazvukového měniče) v proudícím plynu z jehly.

Zobrazení ukázalo, že proud plynu z jehly se při vypnutém ultrazvuku nijak významně nerozbíhá (světlý kanál v ose jehly) a vytváří tenkou vrstvu podél povrchu nástavce měniče. Při aplikaci ultrazvuku jsou obě zmíněné oblasti narušeny, což se například projeví jako významné viditelné rozšíření objemu výboje mezi jehlou a plochou nástavce měniče [3]. Popsaná zobrazovací metoda napomohla k vysvětlení celé řady environmentálně zaměřených aplikací výkonového ultrazvuku, jako např. produkce ozonu [4], rozklad těkavých organických látek, likvidace oxidů dusíku [5], a nabízí se jako jednoduchá a přitom účinná zobrazovací metoda v akustice.

Poděkování

Projekt vznikl v rámci výzkumného záměru ČVUT v Praze MSM6840770015 "Výzkum metod a systémů pro měření fyzikálních veličin a zpracování naměřených dat" financovaného Ministerstvem školství, mládeže a tělovýchovy.

Reference

- Settles G. S.: Schlieren and shadowgraph techniques, Springer-Verlag Berlin, Heildelberg, N.Y., 2001.
- [2] Holder D. W., North R. J.: Schlieren methods, H.M.S.O. London, 1963.
- [3] Bálek R., Pekárek S.: Experimental study of power ultrasound interaction with DC athmospheric pressure electrical discharge, Program and Paper Abstracts of World Congress on Ultrasonics – Ultrasonics International 2005 Beijing, Acoustical Society of China 2005, 66, 2005.
- [4] Pekárek S., Bálek R.: Ozone generation by hollow needle to plate electrical discharge in ultrasound field, Journal of Physics D: Applied Physics, 37, 1214–1220, 2004.
- [5] Pekárek S., Bálek R., Pospíšil M.: Effect of ultrasound waves on electrical characteristics of a hollow needle to plate electrical discharge in air or mixture of air with VOC, Bulletin of the American Physical Society, 49, 21, 2004.

Obrázek 5: Šlírové fotografie oblasti mezi jehlou a nástavcem ultrazvukového měniče: a) geometrie oblasti, b) bez aplikace ultrazvuku, c) s vlivem ultrazvuku

Měření akustické difrakce na modelové hlavě a trupu

Jiří Zendulka a Ilona Ali Bláhová

ČVUT–FEL, Technická 2, 166 27 Praha 6 e-mail: [zenduj1;blahova]@fel.cvut.cz

The measurement of the directivity function of human hearing on the model of a human head and body was a part of the research of acoustic diffraction and scattering on solid obstacles. The experimental study of secondary sound fields around a solid obstacle (a sphere, cylinder, circular board and a model of a human head and body) had been realized before. The goal of our work was to develop a suitable measuring method and compare the results of measurements with analytical or numerical ones.

1. Úvod

V této stati je popsán princip měřicí metody s následnou prezentací naměřených výsledků. Cílem naší práce bylo vypracování takové měřicí metody, aby mohly být výsledky měření porovnány s analytickými nebo numerickými výpočty matematického modelu. Měření akustické difrakce na umělé lidské hlavě a trupu předcházelo měření akustických sekundárních polí v okolí kruhové desky [6], sféry [7] a válce [10]. Metoda měření byla ověřena na výše uvedených tělesech, pro která bylo okolní sekundární akustické pole analyticky vypočítané a výsledky měření tak mohly být porovnány s teoretickými hodnotami. Matematický výpočet sekundárního akustického pole v okolí umělé lidské hlavy a trupu, ze kterého lze směrové charakteristiky slyšení získat, není jednoduchý a není jej možné vyjádřit analyticky, jako např. u sféry [7]. Jednou z metod výpočtu je numerická metoda hraničních prvků, kterou se v oblasti modelování akustické difrakce v okolí tuhých těles zabýval Ing. Jan Rejlek [5].

2. Popis metody měření

Metoda měření frekvenčních charakteristik lidského slyšení vychází z poznatků teorie signálu a soustav. Měřený experiment, uskutečněný v bezodrazové komoře, můžeme pokládat za soustavu (ve smyslu teorie signálů a soustav). Soustavu tvoří samotná umělá lidská hlava a trup, dále bezodrazová komora a médium, ve kterém se zvuk šíří, v našem případě vzduch. Vliv bezodrazové komory lze zanedbat a považovat bezodrazovou komoru za ideální model volného pole. Je patrné, že tato soustava bude pro běžné hodnoty akustického tlaku lineární¹ a časově invariantní, protože v době měření se neměnila jak vlhkost vzduchu, tak atmosférický tlak. Lze tudíž konstatovat, že naše soustava vyhovuje podmínkám linearity a časové invariance. Signálem vstupujícím do této soustavy je akustický signál naměřený bez přítomnosti umělé lidské hlavy a trupu. Signálem výstupním je akustický signál naměřený mikrofonem umístěným v ušním boltci umělé lidské hlavy.

Z Fourierových obrazů autokorelačních funkcí těchto signálů získáme přenosovou charakteristiku pro každý úhel natočení umělé lidské hlavy a trupu (0° až 360°). Poté je možné pro danou frekvenci vyjádřit směrovou charakteristiku. Generovaný signál byl bílý šum, který je pro zjištění přenosové charakteristiky soustavy nejvhodnější. Využívá se vlastnosti striktní ergodicity bílého šumu a konstantní velikosti spektra bílého šumu v potřebné šířce pásma. Odezva soustavy na tento vstupní signál je potom přímo impulsní odezva h(t), jejíž Fourierův obraz odpovídá přenosové charakteristice H(f).

3. Výpočet přenosové charakteristiky H(f)

Signál naměřený bez přítomnosti umělé lidské hlavy a trupu označme u(t) a signál naměřený s mikrofony umístěnými v ušních boltcích y(t). Pak odpovídající autokorelační funkce označme $R_u(t)$, $R_y(t)$ a vzájemnou korelační funkci $R_{uy}(t)$. Označení $R_u(t)$ odpovídá autokorelační funkci signálu vstupujícího do soustavy, $R_y(t)$ autokorelační funkci signálu vystupujícího ze soustavy a $R_{uy}(t)$ vzájemné korelační funkci vstupního a výstupního signálu soustavy.

Obrázek 1: Vstupní a výstupní signály LTI soustavy

Výpočet korelačních funkcí se prováděl v programu MATLAB pomocí funkce *xcorr*, výpočet spektrální hustoty signálu pomocí funkce *fft*. Příklad průběhu těchto korelačních funkcí je zobrazen na obr. 2. Hodnota autokorelační funkce v čase t = 0 udává energii signálu. Z průběhů je patrné, že hodnota autokorelační funkce výstupního signálu v čase t = 0 je větší než hodnota autokorelační funkce vstupního signálu v čase t = 0. Tato skutečnost je dána tvarem lidské hlavy a ušního boltce, které fungují pro frekvence vyšší než 2 kHz jako směrová akustická an-

 $^{^1 \}rm Nelinearita se v akustice projevuje až při velmi velkých změnách hodnot akustického tlaku (cca stovky Pa).$

téna. Proto na vyšších frekvencích (> 2 kHz) přijímá lidské ucho více akustické energie než mikrofon umístěný ve volném poli. Fourierovou transformací korelačních funkcí získáme spektrální hustoty naměřených signálů $C_u(f)$, $C_y(f)$ a $C_{uy}(f)$ (viz obr. 3). Frekvenční charakteristiku soustavy lze vypočítat pomocí vztahů (1) a (2). Upřesněme, že značení H(f) odpovídá absolutní hodnotě přenosové charakteristiky.

$$H(f) = \frac{C_{uy}(f)}{C_u(f)},\tag{1}$$

resp. pro $C_{uy}(f)$ a $C_y(f)$

$$H(f) = \frac{C_y(f)}{C_{uy}(f)}.$$
(2)

V hladinovém vyjádření potom lze psát

$$H_{\rm dB}(f) = 10 \log \frac{C_y(f)}{C_{uy}(f)} = 10 \log \frac{C_{uy}(f)}{C_u(f)}.$$
 (3)

Tímto způsobem byly vypočítány přenosové charakteristiky H(f) pro úhly 0° až 360°. Z těchto přenosových funkcí se potom vyjádřily směrové charakteristiky pro frekvence 100 Hz až 9000 Hz. Přenosovou charakteristiku H(f) lze v tomto případě též chápat jako frekvenční průběh směrovosti v daném úhlu měření. Maximální směrovost říká, o kolik přijímá mikrofon umístěný v ušním boltci více akustické energie v úhlu maximálního příjmu než mikrofon umístěný ve volném poli. Maximální směrovost je tedy poměrová veličina a v této stati je označena písmenem D (Directivity). Často se maximální směrovost vyjadřuje v hladinovém vyjádření, jehož výpočet je dán vztahem

$$D_{dB} = 10 \log D. \tag{4}$$

Použité měřicí mikrofony mají všesměrovou (izotropní) charakteristiku, které odpovídá směrovost 0 dB. Tato hodnota směrovosti je referenční. Je-li udána směrovost mikrofonu např. 10 dB, pak to znamená, že daný mikrofon v maximálním směru příjmu přijal 10krát více akustické energie než všesměrový mikrofon.

4. Popis měření

Měření se uskutečnilo v bezodrazové místnosti s vnitřními rozměry $7,5 \times 6,25 \times 5,7$ m. Měřilo se měřicím systémem PULSE firmy Brüel & Kjær s dvojicí mikrofonů 4190 s průměry membrány 1/2''. Vzorkovací kmitočet mikrofony snímaného akustického signálu byl 65,5 kHz. Jako zdroj akustického signálu byla použita reproduktorová soustava S603 výrobce B&W v kombinaci se zesilovačem Vincent SP-996. Tato akustická soustava byla buzena interním generátorem bílého šumu měřicího systému PULSE. Umělá lidská hlava a trup jsou vyrobeny ze sádry dle normy ITU-T P.58 (rozměry a výrobní detaily jsou uvedené v [11]). Umělá lidská hlava a trup i reproduktorová soustava byly umístěny na železném tyčovitém stojanu upevněném v podlaze komory. Vzájemná vzdálenost

Obrázek 2: Příklad průběhu korelačních funkcí $R_u(\tau),$
 $R_y(\tau)$ a $R_{uy}(\tau)$

Obrázek 3: Příklad průběhu spektrálních hustot vstupního a výstupního signálu $C_u(f)$ a $C_y(f)$

Obrázek 4: Příklad průběhu vzájemné spektrální hustoty $C_{uy}(f)$ a přenosové charakteristiky H(f)

reproduktorové soustavy a umělé lidské hlavy a trupu byla $4,5\,\mathrm{m}.$

Obrázek 5: Blokové schéma uspořádání měřicí úlohy

Obrázek 6: Detail umístění měřicího mikrofonu v ušním boltci

Nejprve byly zaznamenávány šumové signály s mikrofony umístěnými v obou ušních boltcích umělé hlavy a trupu. Detail umístění měřicího mikrofonu v ušním boltci je na obr. 6. S umělou lidskou hlavou a trupem se postupně otáčelo od 0° do 360° s krokem po 15°, z čehož vyplývá, že bylo zaznamenáno dvanáct šumových signálů, přičemž každý z nich odpovídal jednomu úhlu natočení. Každý z těchto zaznamenaných signálů představuje výstupní signál soustavy y(t) v souladu s obr. 1. Potom byl zaznamenán šumový signál bez přítomnosti umělé lidské hlavy a trupu. Měřicí mikrofony byly umístěny pomocí stojanu do stejné pozice jako při měření s umělou hlavou a trupem. Tento zaznamenaný šumový signál odpovídá vstupnímu signálu soustavy u(t). Zaznamenané šumové signály byly zpracovány v programu MATLAB, jak je uvedeno v předchozí části "Výpočet přenosové charakteristiky H(f)".

5. Výsledky měření

Na obr. 7 je zobrazen frekvenční průběh přenosové charakteristiky pro úhel 0°. Je zřejmé, že směrovost výrazně narůstá od 2 kHz a dosahuje svého maxima pro frekvenci 6 kHz, a to 8 dB, poté již rychle klesá. Pro ilustraci byla vypočítána inverzní charakteristika $H(f)^{-1}$ k přenosové charakteristice H(f). Tato inverzní křivka $H(f)^{-1}$ je pro srovnání zobrazena na obr. 8 spolu s křivkou stejné hlasitosti pro 40 Ph. Je patrné, že v oblasti kmitočtů od 200 Hz do 4 kHz se průběhy s malou odchylkou shodují.

Obrázek 7: Přenosová charakteristika H(f) měřená v akustické ose (úhel 0°) umělé lidské hlavy a trupu

Mimo tyto frekvence se již významně podepisují fyziologické jevy ve středním a vnitřním uchu na sluchový vjem. Na vyšších frekvencích okolo 6 kHz je to také dáno sku-

Obrázek 8: Porovnání inverzní křivky přenosové charakteristiky $H(f)^{-1}$ a křivky stejné hlasitosti 40 Ph

tečností, že mikrofony jsou umístěny v bezprostřední blízkosti ústí ušního boltce, ovšem ve skutečném lidském uchu je zvuk snímán až ve vnitřním uchu. Právě cestou zvuku od vnějšího ucha až k ušním vlásečnicím, které způsobují zvukový vjem, dochází k útlumu zvuku a k následnému zvlnění křivky stejné hlasitosti vůči křivce $H(f)^{-1}$. Podobná situace bude platit i pro nízké frekvence, pro které bude mít ušní zvukovod již velký vlnový odpor. Nicméně je vidět, že pro určitou frekvenční oblast je vliv difrakce na lidské hlavě a ušním boltci významný a má dominantní vliv na sluchový vjem člověka.

Obrázek 9: Směrové charakteristiky pro mikrofon umístěný v levém a pravém ušním boltci

Na dalším obr. 9 je zobrazen průběh směrové charakteristiky η pro levé a pro pravé ucho (resp. mikrofon umístěný v levém a pravém ušním boltci). Všechny směrové charakteristiky uvedené na následujících obr. 9 a 10 jsou zobrazeny v lineárním měřítku a jsou normovány k maximální hodnotě směrovosti D. Směrová charakteristika na obr. 9 je zobrazena pro frekvenci 1 kHz s maximální směrovostí 3,1 dB. Je zřejmé, že maximální směrovost je dosažena pro úhly kolem 90°, resp. 270°, tedy ve směru, kdy je ušní boltec v akustické ose se zdrojem akustického vlnění. Na dalších průbězích směrových charakteristik ale

uvidíme, že maximální směrovost pro tyto úhly neplatí pro všechny frekvence.

Na následujícím obr. 10 jsou zobrazeny naměřené směrové charakteristiky pro frekvence od 100 Hz do 9000 Hz. Je patrné, že pro frekvenci 100 Hz je vnímán zvuk téměř všesměrově. Pro frekvenci 500 Hz se maximum směrovosti přesouvá směrem k 90° s hodnotou 1,7 dB. Podobná situace je pro frekvenci 1000 Hz s maximem směrovosti 2,1 dB. Na průběhu směrové charakteristiky pro frekvenci 1500 Hz je zřejmé, že mikrofony umístěné v ušních boltcích přijímají více akustické energie při natočení umělé lidské hlavy a trupu čelem vzad než při natočení čelem ke zdroji akustického vlnění. Tato skutečnost je způsobena akustickou difrakcí na umělé hlavě a trupu. Na frekvenci 2000 Hz je situace opačná, maximální příjem akustické energie je úzce soustředěn čelem ke zdroji akustické vlny. Na frekvenci 3000 Hz je příjem zcela soustředěn do svazku v rozsahu $\pm 60^{\circ}$. Postranní a zadní příjem je zcela potlačen. Směrovost je 5,5 dB. Na následující frekvenci 4000 Hz se dále zužuje šířka přijímacího svazku na $\pm 30^\circ$ při téměř stejné směrovosti jako u frekvence 3000 Hz. U frekvence 5000 Hz se oproti frekvenci 4000 Hz přijímaná energie více soustředila do okrajů svazku $\pm 30^{\circ}$ se směrovostí 5,8 dB. Pro frekvenci 6000 Hz je dosahováno nejvyšší hodnoty směrovosti, a to téměř 9 dB. Tato směrovost je dosahována pro úhly $120^\circ,$ resp. $240^\circ,$ dále potom pro $15^\circ,$ resp. $345^\circ.$ Při pohledu na obr. 8, kde je porovnán inverzní průběh přenosové charakteristiky $H(f)^{-1}$ s křivkou stejné hlasitosti 40 Ph, je patrné, že nejcitlivější oblast lidského slyšení je kolem 3 kHz, nikoliv oblast kolem 6 kHz. Příčina této odchylky byla již popsána v druhém odstavci této sekce. Na následujících směrových charakteristikách pro 7000 Hz a 8000 Hz směrovost rychle klesá až na hodnotu 4,4 dB pro frekvenci 9000 Hz.

6. Závěr

Závěrem lze konstatovat, že akustická difrakce na ušních boltcích a hlavě významně ovlivňuje lidské slyšení v oblasti frekvencí vyšších než 1000 Hz. Největší vliv akustické difrakce byl pozorován pro frekvenci 6000 Hz, kdy byla naměřena nejvyšší směrovost 8,9 dB v oblasti úhlu 15° a 120°, resp. 240° a 345°. Výsledky naší práce budou použity v problematice aktivního snižování hluku.

Poděkování

Tato práce vznikla v rámci výzkumného záměru ČVUT v Praze MSM6840770015 "Výzkum metod a systémů pro měření fyzikálních veličin a zpracování naměřených dat" financovaného Ministerstvem školství, mládeže a tělovýchovy.

Obrázek 10: Průběhy směrových charakteristik η pro frekvence v rozsahu 100 Hz až 9000 Hz

Reference

- Skudryzk, E.: The Foundations of Acoustics, Springler-Verlag, New York, 1971.
- [2] Škvor, Z.: Akustika a elektroakustika, Academia, Praha, 2001.
- [3] Jiříček, O.: Úvod do akustiky, ČVUT, Praha, 2005.
- [4] Kadlec, F.: Zpracování akustických signálů, ČVUT, Praha, 2002.
- [5] Rejlek, J.: Modelování difrakce zvuku metodou hraničních prvků, diplomová práce, FEL ČVUT, Praha, 2004.
- [6] Bláhová, I. Jiříček, O.: Difrakce na kruhové desce. In 66. Akustický seminář. Praha: Česká akustická společnost, 2003, s. 3–8. ISBN 80-01-02763-5.
- [7] Ali Bláhová, I. Jiříček, O. Brothánek, M.: Scattering and Diffraction of Acoustical Waves on Sphere. In Workshop 2004 [CD-ROM]. Prague: CTU, 2004, vol. A, s. 116–117. ISBN 80-01-02945-X.

- [8] Ali Bláhová, I. Zendulka, J.: Verification of Method for Description of Secondary Sound Field. In Proceedings of Workshop 2005 [CD-ROM]. Prague: CTU, 2005, ISBN 80-01-03201-9.
- [9] Ali Bláhová, I. Jiříček, O. Zendulka, J.: Sekundární akustické pole v okolí sféry. In 69. Akustický seminář. Praha: Česká akustická společnost, 2004, s. 5–10. ISBN 80-01-03081-4.
- [10] Ali Bláhová, I. Jiříček, O. Brothánek, M. Zendulka, J.: Secondary Sound Field Around Cylindrical Obstacle. In Proceedings of Workshop 2005 [CD--ROM]. Prague: CTU, 2005, ISBN 80-01-03201-9.
- [11] International Telecommunication Union: ITU-T Recommendation P.58 (08/96) – Head and torso simulator for telephonometry; Series P: Telephone transmission quality, Objective measuring apparatus, 1996.

Seznam českých technických norem – září 2006

Třída 73, Stavební akustika

73 0501	ČSN EN ISO 10534-1	Akustika – Určování činitele zvukové pohltivosti a akustické impedance
	určená norma	v impedančních trubicích – Cást 1: Metoda poměru stojaté vlny
73 0501	ČSN EN ISO 10534-2	Akustika – Určování činitele zvukové pohltivosti a akustické impedance
	urcena norma	v impedancnich trubicich – Cast 2: Metoda prenosove funkce
73 0502	CSN EN 29053 určená norma	Akustika – Metody pro použití v akustice – Stanovení odporu proti proudění vzduchu
72 0502		Kabiny nya cimultánní tlymačaní Obacná chaval-tavistily a vyhovaní
13 0505	C3N 130 2003	Kabiny pro sinuitanni tiunocem – Obecne charakteristiky a vybavem
73 0504	ČSN ISO 4043	Mobilní kabiny pro simultánní tlumočení – Obecné charakteristiky a vybavení
73 0505	ČSN ISO 9052-1 určená norma	Akustika – Stanovení dynamické tuhosti – Část 1: Materiály pro izolaci plovoucích podlah v bytových objektech
	*	
73 0509	CSN EN ISO 15186-1	Akustika – Měření zvukové izolace stavebních konstrukcí a v budovách pomocí akustické intenzity – Část 1: Laboratorní měření (EN ISO 15186-1:2003, idt ISO 15186-1:2000)
73 0509	ČSN ISO 15186-2	Akustika – Měření zvukové izolace stavebních konstrukcí a v budovách pomocí akustické intenzity – Část 2: Měření v budovách (idt ISO 15186-2:2003)
73 0509	ČSN ISO 15186-3	Akustika – Měření zvukové izolace stavebních konstrukcí a v budovách pomocí akustické intenzity– Část 3: Laboratorní měření na nízkých kmitočtech (idt ISO 15186-3:2002)
73 0510	ČSN ISO 10053	Akustika – Laboratorní měření útlumu zvuku kancelářskou zástěnou
73 0511	ČSN EN ISO 140-1	Akustika – Měření zvukové izolace stavebních konstrukcí a v budovách – Část 1: Požadavky na uspořádání laboratoří s potlačeným bočním přenosem
73 0511	ČSN EN 20140-2	Akustika – Měření zvukové izolace stavebních konstrukcí a v budovách –
	harmonizovaná norma	Část 2: Určení, ověření a aplikace přesných údajů
73 0511	ČSN EN ISO 140-3	Akustika – Měření zvukové izolace stavebních konstrukcí a v budovách –
	určená norma	Část 3: Laboratorní měření vzduchové neprůzvučnosti stavebních konstrukcí
73 0511	ČSN EN ISO 140-4	Akustika – Měření zvukové izolace stavabních konstrukcí a v budovách –
75 0511	C3N EN 150 140-4	Část 4: Měření vzduchové neprůzvučnosti mezi místnostmi v budovách
73 0511	ČSN EN ISO 140-5	Akustika – Měření zvukové izolace stavebních konstrukcí a v budovách –
	určená norma	Část 5: Měření vzduchové neprůzvučnosti obvodových plášťů a jejich
70 0511	ČON 51 100 140 C	
73 0511	CSN EN ISO 140-6	Akustika – Měření zvukové izolace stavebních konstrukcí a v budovách –
	urcena norma	konstrukcí
73 0511	ČSN EN ISO 140-7	Akustika – Měření zvukové izolace stavebních konstrukcí a v budovách –
		Část 7: Měření kročejové neprůzvučnosti stropních konstrukcí v budovách
73 0511	ČSN EN ISO 140-8	Akustika – Měření zvukové izolace stavebních konstrukcí a v budovách –
	určená norma	Cást 8: Laboratorní měření snížení přenosu kročejového zvuku podlahou na těžkém referenčním stropu
73 0511	ČSN EN 20140-9	Akustika – Měření zvukové izolace stavebních konstrukcí a v budovách –
	harmonizovaná norma Vyžaduje opravu	Cást 9: Laboratorní měření vzduchové neprůzvučnosti mezi místností pro stanovení zvukové izolace zavěšeného podhledu s průběžnou vzduchovou vrstvou
L		

73 0511	ČSN EN 20140-10	Akustika – Měření zvukové izolace stavebních konstrukcí a v budovách –
	harmonizovaná norma	Část 10: Laboratorní měření vzduchové neprůzvučnosti malých
		stavebních prvků
73 0511	ČSN EN ISO 140-11	Akustika – Měření zvukové izolace stavebních konstrukcí a v budovách –
	harmonizovaná norma	Část 11: Laboratorní měření snížení přenosu kročejového zvuku
		podlahou na lehkém referenčním stropu
73 0511	ČSN EN ISO 140-12	Akustika – Měření zvukové izolace stavebních konstrukcí a v budovách –
		Cást 12: Laboratorní měření vzduchové a kročejové neprůzvučnosti
	×	v horizontalnim směru podlah s průběžnou vzduchovou vrstvou
73 0511	CSN EN ISO 140-14	Akustika – Měření zvukové izolace stavebních konstrukcí a v budovách –
		Cast 14: Smernice pro netypicke situace v budovach
73 0511	CSN EN ISO 140-16	Akustika – Měření zvukové izolace stavebních konstrukcí a v budovách –
	vydani 2007	Cast 16: Laboratorni mereni zlepseni nepruzvucnosti pomoci pridavne
72 0512	ČEN EN 160 19264 1	Vistvy Starshuć alasetila – Móra žet alasetických slasta stólka dos z slasta stó
75 0512	CSN EN 150 12354-1	stavební akustika – vypočet akustických vlastnosti budov z vlastnosti stavebních prvků – Čést 1. Vzduchová neprůzvučnost mezi místnostmi
73 0512	ČSN EN ISO 12354 2	Stavobní akustika – Výpočet akustických vlastností hudov z vlastností
75 0512	CSN EN 150 12554-2	stavebních prvků – Část 2: Kročejová neprůzvučnost mezi místnostmi
73 0512	ČSN EN ISO 12354-3	Stavební akustika – Výpočat akustických vlastností hudov z vlastností
15 0512		stavebních prvků – Část 3: Vzduchová neprůzvučnost vůči venkovnímu
		zvuku
73 0512	ČSN EN ISO 12354-4	Stavební akustika – Výpočet akustických vlastností budov z vlastností
		stavebních prvků – Část 4: Přenos zvuku z budovy do venkovního
		prostoru
73 0512	ČSN EN ISO 12354-6	Stavební akustika – Výpočet akustických vlastností budov z vlastností
	vydání 2004	stavebních prvků – Část 6: Zvuková pohltivost v uzavřených prostorech
73 0513	ČSN EN ISO 10848-1	Akustika – Laboratorní měření bočního přenosu šířeného vzduchem
	vydání listopad 2006	a kročejového zvuku mezi sousedními místnostmi – Cást 1: Rámcový
	nova rada norem	dokument
73 0513	CSN EN ISO 10848-2	Akustika – Laboratorní měření bočního přenosu šířeného vzduchem
	vydani listopad 2006	a krocejoveno zvuku mezi sousednimi mistnostmi – Cast 2: Aplikace na lohkó pryky s malým ylivom styku
73 0513		Akustika – Laboratorní měření bežního přenosu čířeného vzduchom
13 0313	vudání listopad 2006	a kročejového zvuku mezi sousedními místnostmi – Část 3. Anlikace na
	nová řada norem	lehké prvky s podstatným vlivem styku
73 0524	ČSN EN ISO 18233	Akustika – Aplikace nových akustických metod měření stavebních
		konstrukcí, v budovách a v místnostech
		(nepřeložena, pouze vyhlášena ve Věstníku)
73 0525	ČSN 73 0525	Akustika – Projektování v oboru prostorové akustiky – Všeobecné zásady
73 0526	ČSN 73 0526	Akustika – Projektování v oboru prostorové akustiky – Studia a
		místnosti pro snímání, zpracování a kontrolu zvuku
73 0527	ČSN 73 0527	Akustika – Projektování v oboru prostorové akustiky – Prostory pro
	revize 2004	kulturní účely – Prostory ve školách – Prostory pro veřejné účely
	×	Revize stávající normy vyvolaná změnou NV č. 502/2000 Sb.
73 0528	CSN EN ISO 11654	Akustika – Absorbéry zvuku používané v budovách – Hodnocení zvukové
	urcena norma	ponitivosti
73 0529	CSN EN ISO 11821	Akustika – Měření útlumu zvuku <i>in situ</i> přemístitelné clony
73 0530	CSN 73 0530	Akustika – Stanovení hladin hluku a dob dozvuku v nevýrobních
	norma zrušena 2006	pracovnich prostorech

73 0531	ČSN EN ISO 717-1	Akustika – Hodnocení zvukové izolace stavebních konstrukcí a
	určená norma	v budovách – Cást 1: Vzduchová neprůzvučnost
73 0531	CSN EN ISO 717-1	Akustika – Hodnocení zvukové izolace stavebních konstrukcí a
	zmena 2007	v budovach – Cast I: Vzduchova neprůzvučnost $(EN IGO 717 1 (A + 0.006))$
	×	(EN ISO 717-1/A1:2006 + ISO 717-1/Ama.1:2006)
73 0531	CSN EN ISO 717-2	Akustika – Hodnocení zvukové izolace stavebních konstrukcí a
	urcena norma	v budovách – Cast 2: Kročejová neprůzvučnost
73 0531	CSN EN ISO 717-2	Akustika – Hodnocení zvukové izolace stavebních konstrukcí a
	zmena 2007	v budovach – Cast 2: Kročejova neprůzvučnost $(EN IGO 212 0 (A + 0.000))$
70.0500	ČCN 72 0522	(EN 150 717-2/A1:2000 + 150 717-2/Ama.1:2000)
73 0532	CSN 73 0532	Akustika – Ochrana proti hluku v budovach a souvisejici akusticke
	urcena norma	Vlastnosti stavednich vyrobku – Pozadavky
	100120 2005	hodnocení změřených hodnot (CSI Praha)
73 0533	ČSN ISO 17497-1	Akustika – Rozptyl zvuku povrchy – Část 1: Měření činitele
	vydání leden 2006	rozptylovosti pro všesměrový dopad zvuku v dozvukové místnosti
73 0534	ČSN ISO 3382	Akustika – Měření doby dozvuku místností a sálů s uvedením jiných
		akustických parametrů
73 0535	ČSN EN ISO 354	Akustika – Měření zvukové pohltivosti v dozvukové místnosti
	určená norma	(idt EN ISO 354:2003)
	revize 2003	
73 0536	ČSN EN ISO 3822-1	Akustika – Laboratorní zkoušky emise hluku armatur a zařízení
		vnitřních vodovodů – Část 1: Metody měření
73 0536	ČSN EN ISO 3822-2	Akustika – Laboratorní zkoušky emise hluku armatur a zařízení
		vnitřních vodovodů – Cást 2: Montáž a provozní podmínky výtokových
	×	ventilů a misicích baterií
73 0536	CSN EN ISO 3822-3	Akustika – Laboratorní zkoušky emise hluku armatur a zařízení
		vnitrnich vodovodů – Cast 3: Montaž a provozní podminky průtokových
72 0526	ČCNI EN 100 2000 4	
73 0530	CSN EN 150 3822-4	Akustika – Laboratorni zkousky emise hluku armatur a zarizeni vnitrnich vodovodů – Číst 4: Montóž a provozní podmínky sposiólních armatur
72 0527	ČSN EN 14266	Alugtika – Laboratorní měžení hluku z instalací pro odpodní vody
15 0551	vydání 2005	Akustika – Laboratorini mereni muku z instalaci pro oupadini vody
73 0538	ČSN EN ISO 16032	Akustika – Měření hladin akustického tlaku technických zařízení
	vydání 2005	v budovách – Technická metoda
73 0539	ČSN EN ISO 10052	Akustika – Měření vzduchové a kročejové neprůzvučnosti a hluku
	vydání 2005	technických zařízení v budovách – Zjednodušená metoda
73 0540	ČSN EN ISO 16032	Akustika – Měření hladin akustického tlaku technických zařízení
chyba	vydání 2005	v budovách – Technická metoda
$vet\check{r}.zn.$		
73 0541	ČSN EN ISO 10052	Akustika – Měření vzduchové a kročejové neprůzvučnosti a hluku
chyba	vydání 2005	technických zařízení v budovách – Zjednodušená metoda
$ve t \check{r}. zn.$	¥	
73 7060	CSN EN 1793-1	Zařízení pro snížení hluku silničního provozu – Zkušební metody
		stanoveni akustických vlastnosti – Cást 1: Určení zvukové pohltivosti
		laboratorni metodou

Zpracoval: Jaromír Čížek

No. 4 · pp. 501 - 665 · July/August 2006 E 21 466 · ISSN 1610-1928

Volume 92

ACTA ACUSTICA

The Journal of the European Acoustics Association (EAA) · International Journal on Acoustics

Table of Contents

Scientific Papers	
General Linear Acoustics	
U. P. Svensson, P. T. Calamia Edge-Diffraction Impulse Responses Near Specular-Zone and Shadow-Zone Boundaries	501
R. Kosobrodov, S. Kuznetsov Acoustic Transfer Impedance of Plane-Wave Couplers	513
B. Schwarz-Röhr Scattering of Sound by a Hollow, Hard Sphere with an Opening	521
Atmospheric Sound	
M. Baulac, J. Defrance, P. Jean, F. Minard Efficiency of Noise Protections in Urban Areas: Predictions and Scale Model Measurements	530
Ultrasonics	
A. Demčenko, E. Žukauskas, R. Kažys, A. Voleišis Interaction of the A ₀ Lamb Wave Mode With a De-Lamination Type Defect in GLARE3-3/2 Composite Material	540
Physical Acoustics	
R. Latif, R. Latif, E. H. Aassif, A. Moudden, G. Maze Analysis of the Acoustic Characteristics of an Elastic Plate Immerged in Water from the Time-Frequency Image (in French)	549
Active Control	
Q. Mao, S. J. Pietrzko Measurements of Local Volume Displacement Using a Piezoelectric Array	556
Environmental Noise	
K. Heutschi, R. Bayer Sound Radiation From Railway Tunnel Openings	567
R. Makarewicz, R. Gołębiewski Estimation of the A-Weighted Long Term Average Sound Level	574
R. Makarewicz, R. Gołębiewski Uncertainty of Traffic Noise Prediction	578

S. Hirzel Verlag · Stuttgart

Ш

No. 4 · pp. 501-665 · July/August 2006 E 21 466 · ISSN 1610-1928

Volume 92

ACTA ACUSTICA

The Journal of the European Acoustics Association (EAA) · International Journal on Acoustics

Room Acoustics	
K. S. Sum, J. Pan Subjective Evaluation of Reverberation Times of Sound Fields with Non-Exponential Decays	583
JJ. Embrechts, L. De Geetere, G. Vermeir, M. Vorländer Calculation of the Random-Incidence Scattering Coefficients of a Sine-Shaped Surface	593
YJ. Choi, F. R. Fricke A Comparison of Subjective Assessments of Recorded Music and Computer Simulated Auralizations in Two Auditoria	604
Acoustic Materials	
Y. M. Shtemler, I. R. Shreiber, A. Britan Shock-Induced Flows through Packed Beds: Transient Regimes	612
Hearing, Audiology and Psychoacoustics	
G. Grimm, T. Herzke, D. Berg, V. Hohmann The Master Hearing Aid: A PC-Based Platform for Algorithm Development and Evaluation	618
R. Hut, M. M. Boone, A. Gisolf Cochlear Modeling as Time-Frequency Analysis Tool	629
Musical Acoustics	
O. Inácio, L. L. Henrique, J. Antunes The Dynamics of Tibetan Singing Bowls	637
Technical and Applied Papers	
J. Patrício, F. Schiappa de Azevedo	
A New Criterion to Evaluate Ambient Vibration	654
European Acoustics Association News	661
Upcoming Events	663
Instructions for Authors	664
Editorial Board	665

No. 5 · pp. 667-856 · September/October 2006 E 21 466 · ISSN 1610-1928

Volume 92

ACTA ACUSTICA

The Journal of the European Acoustics Association (EAA) · International Journal on Acoustics

Table of Contents

Preface	
Measurement and Modelling of Voice Production	V
Scientific Papers	
Measurement and Modelling of Voice Production	
J. Schoentgen Vocal Cues of Disordered Voices: An Overview	667
P. Švancara, J. Horáček Numerical Modelling of Effect of Tonsillectomy on Production of Czech Vowels	681
J. Stoffers, Ch. Neuschaefer-Rube, M. Kob Comparison of Vocal Tract Resonance Characteristics Using LPC and Impedance Measurements	689
C. Manfredi, F. Dori, E. Iadanza Optimised Generalised Singular Value Decomposition for Dysphonic Voice Quality Enhancement	700
T. Ritchings, C. Berry A Comparative Study of Impedance and Acoustic Vowel Phonation Signals for Intelligent Voice Quality Assessment of Patients Recovering from Radiotherapy for Cancer of the Larynx	712
P. Alku, J. Horáček, M. Airas, F. Griffond-Boitier, AM. Laukkanen Performance of Glottal Inverse Filtering as Tested by Aeroelastic Modelling of Phonation and FE Modelling of Vocal Tract	717
S. Takano, K. Honda, K. Kinoshita Measurement of Cricothyroid Articulation Using High-Resolution MRI and 3D Pattern Matching	725
F. Avanzini, S. Maratea, C. Drioli Physiological Control of Low-Dimensional Glottal Models with Applications to Voice Source Parameter Matching .	731
R. Zaccarelli, C. P.H. Elemans, W. T. Fitch, H. Herzel Modelling Bird Songs: Voice Onset, Overtones and Registers	741
M. Gamba, C. Giacoma Vocal Tract Modeling in a Prosimian Primate: The Black and White Ruffed Lemur	749
Nonlinear Acoustics, Macrosonics	
Z. Lu, S. Ye Calculation of the Acoustic Nonlinearity Parameter B/A for Linear Alkanes by the Lee-Kesler Correlation	756
Structural Acoustics	
T. Eck, S. J. Walsh, M. Dale, N. Taylor Vibrational Power Flow Measurement in a Beam Using Electronic Speckle Pattern Interferometry	765

No. 5 · pp. 667-856 · September/October 2006 E 21 466 · ISSN 1610-1928

Volume 92

ACTA ACUSTICA

The Journal of the European Acoustics Association (EAA) · International Journal on Acoustics

Building Acoustics	
J. Y. Jeon, J. K. Ryu, J. H. Jeong, H. Tachibana Review of the Impact Ball in Evaluating Floor Impact Sound	777
Room Acoustics	
T. Neher, T. Brookes, R. Mason Musically Representative Test Signals for Interaural Cross-Correlation Coefficient Measurement	787
E. Gerretsen Estimation Methods for Sound Levels and Reverberation Time in a Room with Irregular Shape or Absorption Distribution	797
Musical Acoustics	
A. Rabbaa Modeling and Measuring of the Oriental Musical Scale	807
M. Ilkowska, A. Miśkiewicz Sharpness Versus Brightness: A Comparison of Magnitude Estimates	812
E. Schubert, J. Wolfe Does Timbral Brightness Scale with Frequency and Spectral Centroid?	820
M. Roger, S. Aubert Aeroacoustics of the Bullroarer	826
H. Järveläinen, M. Karjalainen Perceptibility of Inharmonicity in the Acoustic Guitar	842
Short Communications	
K. Balogh, A. Ziemann, D. Daniel	949
innuence of Aunospheric Kerracuon on Puise Propagation Over a Plat Ground Surface	040
European Acoustics Association News	853
Upcoming Events	853
Instructions for Authors	855
Editorial Board	856

IV

S. Hirz

No. 6 · pp. 857-1076 · November/December 2006 E 21 466 · ISSN 1610-1928

Volume 92

ACTA ACUSTICA ACUSTICA

The Journal of the European Acoustics Association (EAA) · International Journal on Acoustics

Table of Contents

Preface	
Recent Advances in Soundscape Research	V
Scientific Papers	
Recent Advances in Soundscape Research	
K. Hiramatsu A Review of Soundscape Studies in Japan	857
D. Dubois, C. Guastavino, M. Raimbault A Cognitive Approach to Urban Soundscapes: Using Verbal Data to Access Everyday Life Auditory Categories	865
B. Schulte-Fortkamp, A. Fiebig Soundscape Analysis in a Residential Area: An Evaluation of Noise and People's Mind	875
G. Brambilla, L. Maffei Responses to Noise in Urban Parks and in Rural Quiet Areas	881
B. De Coensel, D. Botteldooren The Quiet Rural Soundscape and How to Characterize it	887
R. C. Kull Natural and Urban Soundscapes: The Need for a Multi-Disciplinary Approach	898
M. E. Nilsson, B. Berglund Soundscape Quality in Suburban Green Areas and City Parks	903
C. Lavandier, B. Defréville The Contribution of Sound Source Characteristics in the Assessment of Urban Soundscapes	912
J. Hatfield, I. van Kamp, R. F. S. Job Clarifying "Soundscape": Effects of Question Format on Reaction to Noise from Combined Sources	922
M. Raimbault Qualitative Judgements of Urban Soundscapes: Questionning Questionnaires and Semantic Scales	929
B. Berglund, M. E. Nilsson On a Tool for Measuring Soundscape Quality in Urban Residential Areas	938
C. Guastavino The Ideal Urban Soundscape: Investigating the Sound Quality of French Cities	945
K. Genuit, A. Fiebig Psychoacoustics and its Benefit for the Soundscape Approach (Technical and Applied Paper)	952
C Semidor Listening to a City With the Soundwalk Method (Technical and Applied Paper)	959

No. 6 · pp. 857 - 1076 · November/December 2006 E 21 466 · ISSN 1610-1928

Volume 92

ACTA ACUSTICA ACUSTICA

The Journal of the European Acoustics Association (EAA) \cdot International Journal on Acoustics

Atmospheric Sound	
D. K. Wilson, S. L. Collier, V. E. Ostashev, D. F. Aldridge, N. P. Symons, D. H. Marlin Time-Domain Modeling of the Acoustic Impedance of Porous Surfaces	965
Physical Acoustics	
N. F. Declercq, J. Degrieck, O. Leroy A Double Leaky Type of Surface Wave on Brass Immersed in Water	976
Structural Acoustics	
F. Gautier, MH. Moulet, JC. Pascal Reflection, Transmission and Coupling of Longitudinal and Flexural Waves at Beam Junctions. Part I: Measurement Methods.	982
Environmental Noise	
J. Forssén, M. Hornikx Statistics of A-Weighted Road Traffic Noise Levels in Shielded Urban Areas	998
Hearing, Audiology and Psychoacoustics	
C. Spence, M. Zampini Auditory Contributions to Multisensory Product Perception	1009
Speech	
B. Doval, C. d'Alessandro, N. Henrich The Spectrum of Glottal Flow Models	1026
Musical Acoustics	
I. Lopez, A. Hirschberg, A. Van Hirtum, N. Ruty, X. Pelorson Physical Modeling of Buzzing Artificial Lips: The Effect of Acoustical Feedback	1047
Technical and Applied Papers	
J. P. Chambers, H. Saurenman, R. Bronsdon, L. Sutherland, R. Waxler, K. Gilbert, C. Talmadge Effects of Temperature Induced Inversion Conditions on Suburban Highway Noise Levels	1060
European Acoustics Association News	1071
Doctoral Thesis Abstracts	1073
Upcoming Events	1074
Instructions for Authors	1075
Editorial Board	1076
Annual Index	I*

S. Hirzel Verlag · Stuttgart

26

Akustické listy: ročník 12, číslo 4prosinec 2006ISSN: 1212-4702Vydavatel: Česká akustická společnost, Technická 2, 166 27 Praha 6Vytisklo: Nakladatelství ČVUT, výrobaPočet stran: 28Počet výtisků: 200Vytisklo: Nakladatelství ČVUT, výrobaRedakční rada: M. Brothánek, O. Jiříček, J. Kozák, R. Čmejla, F. Kadlec, J. Štěpánek, P. Urban, J. BurčíkJazyková úprava: R. Svobodová

Uzávěrka příštího čísla Akustických listů je 28. února 2007.